Fiber Ribbon Dimensional Measurement and Color Sequence Verification
Mr. Craig Girdwood, Mr. Andrew McCloskey
Taymer International Inc., Markham, Ontario, Canada, +1-905-479-2614
Abstract
Taymer’s fiber Ribbon Inspection system (RI) is a tool that allows fiber optic cable manufacturers to improve quality of their fiber optic ribbon production process. Fiber optic ribbon is increasing in popularity in the United States and other countries as a method of grouping different fiber strands together. Ribbon cable needs to have consistent geometry to tightly stack multiple ribbons with the high fiber density that is one of the ribbons primary benefits. As ribbon production is a very high speed process, this Ribbon Inspection system is the only way to ensure that the geometry of the ribbon is correct without creating hundreds or thousands of meters of poor quality ribbon.
Introduction
Ribbon optic fiber constructions are becoming more common, in the USA and other countries, displacing loose tube applications. Ribbon has several advantages over loose tube fiber, including easier splicing, smaller footprint and higher fiber density. These benefits require that the fiber ribbons are able to be packed tightly and consistently along the whole length of the cable and the fiber does not change order within the ribbon.
Ribbon manufacturing process is typically a high speed process, with lines running above 500 meters a minute. Taymer’s Ribbon Inspection technology is the only inspection system specifically designed to inspect fiber optic ribbons for geometry defects including the ribbon width, thickness, planarity and gap between fibers.
The Ribbon Inspection system has been designed to not only inspect the geometry of the fiber ribbon, but to also check the sequence of fibers within the ribbon. The fibers in the ribbon are individually colored and it is critical that the color sequence is consistent along the length of the ribbon. The RI system can be setup to compare the current color sequence of fibers to a preset template. Changes in the ribbon color sequence can be automatically detected by the system software. This color inspection technology has the added benefit of also measuring changes in the fiber color, or even if the color of the fiber is missing.
The fiber Ribbon Inspection system is able to be easily integrated into existing or new production lines, and is designed to cover a large range of ribbon fiber counts. The Ribbon Inspection system makes sure that the ribbon dimensions and color sequence is correct, and consistent for the whole run before further processing occurs resulting in poor quality cable.
The lifetime of the lights and pulleys can be over 50,000 hours of usage and they are the only consumable parts.
Previous Ribbon Inspection Limitations
Manual Inspection
The standard procedure for checking dimensionality and color sequence of fiber ribbon during production is to cut off a small section of the start of the run. The ends are then inspected using a microscope to check the quality of the ribbon geometry and the color sequence is correct. The microscope is essential due to the tight tolerances requirements of today’s ribbon manufacturing. With this method if the ribbon quality at the start of the run is poor, the run can be halted and corrective action is taken before the run properly begins. The manual inspection does not provide a way to check if a defect occurs during a run until the whole run is complete.
Laser Inspection Gauge
A laser gauge is the most common method of inspecting round profiled cables. This technology is simple to produce the overall diameter of the product, which is the main dimension that is required to be measured. The relatively complex assembly of the ribbon and accuracy required for fiber ribbon manufacturing prevents laser from being used as a reliable way to check ribbon dimensionality. Laser is also unable to inspect color sequence to detect if a fiber strand changed locations during a run.